🐼 Arkusz Maturalny Matematyka 2016 Maj

Arkusz maturalny w formie online: Matura poprawkowa matematyka – sierpień 2012 – poziom podstawowy. Matura podstawowa matematyka 2016 Egzamin maturalny z matematyki Poziom podstawowy Strona 2 z 24 MMA_1P ZADANIA ZAMKNIĘTE W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (1 pkt) Dla każdej dodatniej liczby a iloraz 2,6 1,3 a a − jest równy A. a−3,9 B. a−2 C. a−1,3 D. a1,3 Zadanie 2. (1 pkt) Liczba (log 2 2) 2 jest EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 11 maja 2021 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 180 minut LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 27 stron (zadania 1–15). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Matura (formuła 2023): CKE Arkusz maturalny: fizyka rozszerzona Rok: 2023 Arkusz PDF i odpowiedzi: Arkusz z formuły 2015 znajdziesz tutaj: en arkusz możesz zrobić online na stronie: SzaloneLiczby.plmatura Egzamin maturalny z matematyki Poziom podstawowy Strona 17 z 24 MMA_1P Zadanie 31. (2 pkt) W skończonym cigu arytmetycznym ą ()an pierwszy wyraz a1 jest równy 7 oraz ostatni wyraz an jest równy 89. Suma wszystkich wyrazów tego ciągu jest równa 2016. egzamin maturalny z biologii, chemii i fizyki, linijki oraz kalkulatora prostego. 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem. 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora. MCH-R1_1P-162 miejsce na naklejkę ę Matura z matematyki MAJ 2022 arkusz PODSTAWOWY. Wszystkie rozwiązania z omówieniem krok po kroku. Poniżej dokładny spis treść i odnośniki czasowe.Z racji na Arkusz maturalny w formie online: Matura matematyka – czerwiec 2013 – poziom podstawowy. Podziel się tym arkuszem ze znajomymi: Matura podstawowa matematyka 2016 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 2019 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 minut LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. MATURA 2020. ARKUSZ EGZAMINACYJNY z MATEMATYKI: POZIOM PODSTAWOWY >>>> Do napisania egzaminu z matematyki na poziomie podstawowym przystąpiły o 09:00 rano 304 tysiące abiturientów: spośród EGZAMIN MATURALNY Z MATEMATYKI Arkusz I POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13 stron. Ewentualny brak zgłoś przewodniczącemu zespou ł nadzorującego egzamin. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. Arkusz maturalny: matematyka rozszerzona Rok: 2016 Arkusz PDF i odpowiedzi: Matura matematyka 2016 maj (poziom rozszerzony) Matura: CKE Arkusz maturalny: matematyka rozszerzona Rok: 2016. Egzaminy maturalne, matury probne, poprawkoweProbna Matura - odpowiedzi i baza arkuszy hxrS95. to strona, na której znajdziesz arkusze maturalne oraz egzaminacyjne, a także inne pomoce edukacyjne. Strona do swojego funkcjonowania wykorzystuje pliki cookies. Wszelkie dane wprowadzane na stronie przez Użytkowników są dobrowolne, chronione polityką prywatności i w razie potrzeby mogą być na prośbę Użytkownika edytowane lub usunięte. Dla każdej dodatniej liczby a iloraz$\begin{split}\begin{split}\frac{a^{-2,6}}{a^{1,3}}\end{split}\end{split}$ jest równyA. $a^{-3,9}$B. $a^{-2}$C. $a^{-1,3}$D. $a^{1,3}$ Liczba $\log_\sqrt{2}\left(2\sqrt{2}\right)$ jest równaA. $\frac{3}{2}$B. $2$C. $\frac{5}{2}$D. $3$ Liczby a i c są dodatnie. Liczba b stanowi 48% liczby a oraz 32% liczby c. Wynika stąd, że A. $c=1,5a$B. $c=1,6a$C. $c=0,8a$D. $c=0,16a$ Równość $\begin{split}\left(2\sqrt{2}-a\right)^2=17-12\sqrt{2}\end{split}$ jest prawdziwa dlaA. $a=3$B. $a=1$C. $a=-2$D. $a=-3$ Jedną z liczb, które spełniają nierówność $-x^5+x^3-x<-2$ , jestA. $1$B. $-1$C. $2$D. $-2$ Proste o równaniach $2x-3y=4$ i $5x-6y=7$ przecinają się w punkcie $P$ . Stąd wynika,żeA. $P=(1,2)$B. $P=(-1,2)$C. $P=(-1,-2)$D. $P=(1,-2)$ Punkty ABCD leżą na okręgu o środku S (zobacz rysunek).Miara kąta BDC jest równaA. $91^\circ$B. $72,5^\circ$C. $18^\circ$D. $32^\circ$ Ze zbioru siedmiu liczb naturalnych {1,2,3,4,5,6,7} losujemy dwie różne liczby. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że większą z wylosowanych liczb będzie liczba dostęp do Akademii! Trójkąt równoboczny ABC jest podstawą ostrosłupa prawidłowego ABCS, w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60∘, a krawędź boczna ma długość 7 (zobacz rysunek). Oblicz objętość tego dostęp do Akademii! Na rysunku przedstawione są dwa wierzchołki trójkąta prostokątnego ABC: A=(−3,−3) oraz C=(2,7) oraz prosta o równaniu y=34x−34, zawierająca przeciwprostokątną AB tego współrzędne wierzchołka B tego trójkąta i długość odcinka dostęp do Akademii! Ciąg arytmetyczny (an) określony jest wzorem an=2016−3n, dla n≥1. Oblicz sumę wszystkich dodatnich wyrazów tego dostęp do Akademii! W trapezie ABCD o podstawach AB i CD przekątne AC oraz BD przecinają się w punkcie S. Wykaż, że jeżeli |AS|=56|AC|, to pole trójkąta ABS jest 25 razy większe od pola trójkąta dostęp do Akademii! Funkcja kwadratowa jest określona wzorem f(x)=x2−11x. Oblicz najmniejszą wartość funkcji f w przedziale ⟨−6,6⟩.Chcę dostęp do Akademii! Wykaż, że jeżeli liczby rzeczywiste a,b,c spełniają warunek abc=1, toa−1+b−1+c−1=ab+ac+bcChcę dostęp do Akademii! Jeżeli do licznika pewnego nieskracalnego ułamka dodamy 32, a mianownik pozostawimy niezmieniony, to otrzymamy liczbę 2. Jeżeli natomiast od licznika i od mianownika tego ułamka odejmiemy 6, to otrzymamy liczbę 817. Wyznacz ten dostęp do Akademii! Rozwiąż nierówność 3×2−6x≥(x−2)(x−8)Chcę dostęp do Akademii! Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo zdarzenia polegającego na tym, że wynikiem rzutu są dwa orły i sześć oczek na kostce, jest dostęp do Akademii! Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? dostęp do Akademii! Jeżeli do zestawu czterech danych: 4,7,8,x dołączymy liczbę 2, to średnia arytmetyczna wzrośnie o 2. dostęp do Akademii! Różnica liczby krawędzi i liczby wierzchołków ostrosłupa jest równa 11. Podstawą tego ostrosłupa dostęp do Akademii! Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 2, a przekątna ściany bocznej ma długość 3 (zobacz rysunek). Kąt, jaki tworzą przekątne ścian bocznych tego graniastosłupa wychodzące z jednego wierzchołka, ma miarę wartość sinα2 jest dostęp do Akademii! Okręgi o środkach S1=(3,4) oraz S2=(9,−4) i równych promieniach są styczne zewnętrznie. Promień każdego z tych okręgów jest dostęp do Akademii! Punkty A, B, C i D leżą na okręgu o środku S. Cięciwa CD przecina średnicę AB tego okręgu w punkcie E tak, że |∢BEC|=100∘. Kąt środkowy ASC ma miarę 110∘ (zobacz rysunek).Chcę dostęp do Akademii! Przekątne równoległoboku mają długości 4 i 8, a kąt między tymi przekątnymi ma miarę 30∘. Pole tego równoległoboku jest równeChcę dostęp do Akademii! Dany jest walec, w którym promień podstawy jest równy r, a wysokość walca jest od tego promienia dwa razy większa. Objętość tego walca jest dostęp do Akademii! Wartość wyrażenia (tg60∘+tg45∘)2−sin60∘ jest dostęp do Akademii! Kąt rozwarcia stożka ma miarę 120∘, a tworząca tego stożka ma długość 6. Promień podstawy stożka jest dostęp do Akademii! Na której z podanych prostych leżą wszystkie punkty o współrzędnych (m−1,2m+5), gdzie m jest dowolną liczbą rzeczywistą? dostęp do Akademii! Liczba |3−9|−3 jest B.−2 D.−4Chcę dostęp do Akademii! Układ równań {2x−3y=5−4x+6y=− ma dokładnie jedno dokładnie dwa nieskończenie wiele dostęp do Akademii! Dla każdej liczby całkowitej dodatniej n suma n początkowych wyrazów ciągu arytmetycznego (an) jest określona wzorem Sn=2n2+n. Wtedy wyraz a2 jest dostęp do Akademii! Jeśli funkcja kwadratowa f(x)=x2+2x+3a nie ma ani jednego miejsca zerowego, to liczba a spełnia dostęp do Akademii! Kąt α jest ostry i sinα=45. Wtedy wartość wyrażenia sinα−cosα jest dostęp do Akademii! Pierwszy wyraz ciągu geometrycznego jest równy 8, a czwarty wyraz tego ciągu jest równy (−216). Iloraz tego ciągu jest równyA.−2243 B.−3 C.−9 D.−27Chcę dostęp do Akademii! Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f, przy czym f(0)=−2 i f(1)= funkcji g jest symetryczny do wykresu funkcji f względem początku układu współrzędnych. Funkcja g jest określona wzorem dostęp do Akademii! Funkcja kwadratowa jest określona wzorem f(x)=(x−1)(x−9). Wynika stąd, że funkcja f jest rosnąca w przedzialeA.⟨5,+∞) B.(−∞,5⟩ C.(−∞,−5⟩ D.⟨−5,+∞)Chcę dostęp do Akademii! Najmniejszą liczbą całkowitą spełniającą nierówność x5+7–√>0 jestA.−14 B.−13 dostęp do Akademii! Liczba log3729log636 jest dostęp do Akademii! Liczba 45⋅54204 jest dostęp do Akademii! Buty, które kosztowały 220 złotych, przeceniono i sprzedano za 176 złotych. O ile procent obniżono cenę butów? dostęp do Akademii! Suma pięciu kolejnych liczb całkowitych jest równa 195. Najmniejszą z tych liczb dostęp do Akademii! Użytkowanie Witryny oznacza zgodę na wykorzystywanie plików cookies. Szczegółowe informacje w Polityce prywatności. Polityce prywatności

arkusz maturalny matematyka 2016 maj